网上有关“有3个x值的单调区间怎么求?”话题很是火热,小编也是针对有3个x值的单调区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
1.定义法
例题 已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。
解 分析函数在R+上的单调性
任取x1>x2>0
Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2)
=(X1-X2)(X1^2+X1X2+X2^2-1)
令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0
因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1
当3X2^2-1>=0时 即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的
同理 当3X1^2-1<=0时 即X1<=根号3/3时 y1-y2<0 函数是递减的
故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3)
因此 a=根号3/3
一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。
2.图像法
例题 求y=x+3/x-1的单调区间
解 函数定义域为(-,1)并(1,+)
Y=X+3/X-1=X-1+4/X-1=1+4/X-1
由图像可知函数在(-,1)和(1,+0)上递减。
函数的图像是解决这类问题的关键。
3.性质法
性质:增+增=增 减+减=减
y=f(x)与y=kf(x) 当k>0 有相同的单调性 当k<0有相反的单调性
y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性
例题 求y=x^3+x的单调区间。
解因为y=x是增函数,当x>=0时,y=x^3是递增的,当x<0时,y=x^3是递增的,所以y=x^3是R上的增函数。
由性质可知,函数y=x^3+x的单调区间为R.
4.复合法
u=p(x) y=f(u)复合后的函数为:y=f(p(x))它们的单调性为:同增异减。
例题 求y=根号(x-1)(x+1)的单调区间。
解 令u=(x-1)(x+1) 则y=根号u
当x>=1时 u=(x-1)(x+1)递增
当x<=-1时 u=(x-1)(x+1)递减
Y=根号u递增
所以 原函数的单调增区间为[1,+)
减区间为(-,-1]
函数的单调性中同增异减怎么理解
奇函数关于原点对称,就像太极图,比如y=x。
偶函数关于Y轴对称,比如y=|x|。
增函数就是Y随X增大而增大,比如 y=x
减函数是Y随着X增大而减小,比如y=1/x。
引理1:已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.
证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.
因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).
因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],
故函数y=f[g(x)]在区间(a,b)上是增函数.
引理2:已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.
证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.
因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).
因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.
扩展资料:
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
参考资料:复合函数_百度百科
关于“有3个x值的单调区间怎么求?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是百姓号的签约作者“第五子赫”
本文概览:网上有关“有3个x值的单调区间怎么求?”话题很是火热,小编也是针对有3个x值的单调区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《有3个x值的单调区间怎么求?》内容很有帮助